Exploring and Visualizing Referring Expression Comprehension Bachelor's Thesis (Mathematics & Industrial Engineering)

David Álvarez Rosa^{1,2,3} Supervisor: Sanja Fidler⁵ Co-Supervisor: Xavier Giró⁴

Politechnical University of Catalonia ¹Interdisciplinary Higher Education Centre ²Barcelona School of Industrial Engineering — ³School of Mathematics and Statistics ⁴Signal Theory and Communications Department

> University of Toronto ⁵Computer Science Department

1/76

David Álvarez Rosa (UPC)

Referring Expression Comprehension

Table of Contents

- Chapter 1. Introduction
- 2 Chapter 2. Theoretical Background
- Chapter 3. Referring Expression Comprehension
 - Ohapter 4. Models
- 5 Chapter 5. Results and Comparison
- 6 Chapter 6. Visualization
 - 7) Chapter 7. Project Analysis

David Álvarez Rosa (UPC)

Referring Expression Comprehension

Barcelona – May 25, 2021 2 / 76

Chapter Outline

Chapter 1. Introduction

- Description and Motivation
- Applications

< 円

David Álvarez Rosa (UPC)

Problem Description

Referring Expression Comprehension

$\mathsf{Image} + \mathsf{Referring} \ \mathsf{Expression} \ \longrightarrow \ \mathsf{Segmentation}!$

(a) Man with cap

(b) Laptop on the right

(c) Army officer white suit

Figure: Examples of Referring Expression Comprehension

4/76

David Álvarez Rosa (UPC)

Referring Expression Comprehension

Problem Description

Referring Expression Comprehension

$\mathsf{Image} + \mathsf{Referring} \ \mathsf{Expression} \longrightarrow \mathsf{Segmentation!}$

(a) Man with cap

(b) Laptop on the right

(c) Army officer white suit

Figure: Examples of Referring Expression Comprehension

4/76

David Álvarez Rosa (UPC)

Referring Expression Comprehension

Problem Description

Referring Expression Comprehension

$\mathsf{Image} + \mathsf{Referring} \ \mathsf{Expression} \longrightarrow \mathsf{Segmentation!}$

(a) Man with cap

(b) Laptop on the right

Figure: Examples of Referring Expression Comprehension

4/76

David Álvarez Rosa (UPC)

Referring Expression Comprehension

Big Frame Referring Expression Comprehension

Regarding learning techniques

- Artificial Intelligence
- Machine Learning
- Deep Learning

Regarding type of data

- Computer Vision
- Natural Language Processing
- ... and Multimodal Learning

Big Frame Referring Expression Comprehension

Regarding learning techniques

- Artificial Intelligence
- Machine Learning
- Deep Learning

Regarding type of data

- Computer Vision
- Natural Language Processing
- ... and Multimodal Learning

Big Frame Referring Expression Comprehension

Regarding learning techniques

- Artificial Intelligence
- Machine Learning
- Deep Learning

Regarding type of data

- Computer Vision
- Natural Language Processing
- ... and Multimodal Learning

Objectives Bachelor's Thesis

- Learning about Machine Learning (ML)
- Fundamentals of neural models
- Undestand state-of-the-art papers
- Model (in REC and Speech to Text)
- Front end development (HTML, CSS, JS)
- Back end (PHP)
- Academia (creationg of thesis and presentation)

→ ∃ →

< (T) >

Applications

Applications Referring Expression Comprehension

- Theoretical
- Industry
- Home Automation and IoT

< 円

Security

Chapter Outline

Chapter 2. Theoretical Background

- Tensors
- Neural Network Architectures
- Training
- Testing

Machine Learning Overview

From Reality to Fiction

Mathematical perspective

Given dataset Ω of inputs $x \in \mathbb{R}^n$ and outputs $y \in \mathbb{R}^m$, find

$$f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

 $x \longmapsto f(x) := \hat{y}$

such that $\hat{y} \approx y$ for every element in the dataset.

Desired generalization

We do not seek memorization, we seek to extract relevant information from the structure of the data in order to make predictions.

9/76

(1)

Machine Learning Overview

From Reality to Fiction

Mathematical perspective

Given dataset Ω of inputs $x \in \mathbb{R}^n$ and outputs $y \in \mathbb{R}^m$, find

$$f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

 $x \longmapsto f(x) := \hat{y}$

such that $\hat{y} \approx y$ for every element in the dataset.

Desired generalization

We do not seek memorization, we seek to extract relevant information from the structure of the data in order to make predictions.

9/76

(1)

Tensors

Tensors

View as multidimensional arrays

- We will understand the tensors as a grouping data structure,
- i.e, as multidimensional arrays.

•
$$T_i$$
, with index $i = (i_1, \ldots, i_n)$

Tensor example

Images as tensor of rank 3,

 $I \in \mathbb{R}^{C \times H \times W}$

(2)

Neural Network Architectures Overview

- Feedforward Neural Network
- Convolutional Neural Network
- Recurrent Neural Network
- Transformer Model

< □ > < @ >

Feedforward Neural Network

Topology: Layers, Neurons and Connections

David Álvarez Rosa (UPC)

Referring Expression Comprehension

Barcelona - May 25, 2021

Feedforward Neural Network

Mathematical Representation

Forward computation

The output values are $y = x^{L}$ can be computed recursively,

$$x^{\ell+1} = f\left(W^{\ell}x^{\ell} + b^{\ell}\right),\tag{3}$$

where W' and b' are a matrix and a vector of weights respectively.

Example of digit recognition

David Álvarez Rosa (UPC)

Referring Expression Comprehension

Barcelona – May 25, 2021

Convolutional Neural Network

Topology

Figure: Convolutional Neural Network architecture

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

David Álvarez Rosa (UPC)

Convolutional Neural Network

Convolutional Layer

Figure: Convolution

Mathematical definition

Given filter F, the convolution is defined as follows,

$$Y_{i,j,k} = \sum_{l,m,n} X_{l,j+m,k+n} F_{i,l,m,n},$$
 (4)

where the sum is performed for all valid l, m, n indices.

< □ > < 凸

David Álvarez Rosa (UPC)

Referring Expression Comprehension

Convolutional Neural Network

Pooling Layer

12	20	30	0	
8	12	2	0	
34	70	37	4	
112	100	25	12	

2×2 Max-Pool	20	30	
,	112	37	

Figure: Max pooling

- Reduce network dimension
- Add non-linearities
- Enlarge field of view

< □ > < @ >

Max pooling

$$f_{X,Y}(S) = \max_{a,b=0}^{1} S_{2X+a,2Y+b}$$
 (5)

Recurrent Neural Network

Topology

Recurrent Neural Network

Variants

- Long Short Term Memory (LSTM)
- Gated Recurrent Unit (GRU)
- But, ...

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

David Álvarez Rosa (UPC)

Transformer Model

Topology

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Training

Training overview Loss functions

- Measures differences between desired and predicted
- Dataset $\Omega = \{(x_i, y_i)\}_{i=1}^N$
- And, predicted output $\hat{y} = f(x)$
- It is common that,

$$\mathcal{L}(\Omega,\theta) = \frac{1}{N} \sum_{(x,y)\in\Omega} \ell(x,y,\theta).$$
(6)

Barcelona - May 25, 2021

21 / 76

• We will assume $\ell \in C^1$

Optimization Overall idea

• We will seek to approximate,

$$\hat{\theta} = \arg\min_{\theta} \mathcal{L}(\Omega, \theta), \tag{7}$$

given that the above exists.

• Usually iterative methods, i.e., given initial guess $\theta^{(0)}$, proceed as follows,

$$\theta^{(t+1)} = \theta^{(t)} + \alpha \,\Delta\theta^{(t)},\tag{8}$$

where α is called the step size (or learning rate), and $\Delta \theta^{(t)}$ is the weight update in step t.

Optimization Methods

- First order methods (higher order infeasible)
- Gradient Descent:

$$\Delta \theta^{(t)} = -\nabla \mathcal{L}(\theta^{(t)}). \tag{9}$$

Due to loss function,

$$\nabla_{\theta} \mathcal{L}(\Omega, \theta) = \frac{1}{N} \sum_{(x, y) \in \Omega} \nabla_{\theta} \ell(x, y, \theta).$$
(10)

• Therefore, in practice, Stochastic Gradient Descent,

$$\nabla_{\theta} \mathcal{L}(\Omega, \theta) \approx \frac{1}{|B|} \sum_{(x, y) \in B} \nabla_{\theta} \ell(x, y, \theta).$$
(11)

David Álvarez Rosa (UPC)

Referring Expression Comprehension

Barcelona - May 25, 2021

Training

Optimization Methods II

Avoid saddle points

Using momentum,

$$\Delta \theta^{(t)} = -\beta \Delta \theta^{(t-1)} - \nabla \mathcal{L}(\theta^{(t)}), \qquad (12)$$

where β is the "friction" hyperparameter.

David Álvarez Rosa (UPC)

Optimization

Weight initialization

- Random
- Xavier initialization

David Álvarez Rosa (UPC)

Optimization

Computing derivatives: error backpropagation

Backpropagation algorithm exemplified

Let w_{ij}^{l} be an individual weight, involved in computing \hat{y}_{i}^{l} then the chain rule applied to $\ell(x, y, \theta)$ yields,

$$\frac{\partial \ell}{\partial w_{ij}^{l}} = \frac{\partial \ell}{\partial \hat{y}_{i}^{l}} \frac{\partial y_{i}^{l}}{\partial w_{ij}^{l}}.$$
(13)

Regularization Techniques

Understanding overfitting

Regularization Techniques

Avoiding overfitting

L_2 regularization

Add a term to loss function, i.e,

$$\hat{\mathcal{L}}(\Omega, heta) = \mathcal{L}(\Omega, heta) + \lambda \operatorname{complexity}(heta),$$

where λ is the regularization hyperparameter, and,

complexity(
$$\theta$$
) = $\|\theta\|_2^2 = \sum_{w \in \theta} w^2$. (15)

- ∢ /⊐ >

(14)

David Álvarez Rosa (UPC)

000 000 11 P C

29 / 76

Regularization Techniques

Avoiding overfitting II

Testing concept

Save data to evaluate

- Evaluate model
 - Quantiative metrics
 - Qualitative
- Compare with state of the art

False evaluation metrics

Never train with test split!

David Álvarez Rosa (UPC)

Chapter Outline

Chapter 3. Referring Expression Comprehension

- Problem Formulation
- Training
- Evaluation Techniques
- Related Work

Chapter 3. Referring Expression Comprehension Problem F

Problem Formulation

Referring Expression Comprehension Reminder

Figure: Parent holding umbrella

- Input 1: Image
- Input 2: Referring Expression
- Output: Segmentation

David Álvarez Rosa (UPC)

Referring Expression Comprehension

Barcelona – May 25, 2021

Datasets

Subtitle

- RefCOCO
 - Generated from MS COCO dataset with a two-player game
 - 142,209 samples (in 19,994 images)
- RefCOCO+
 - Location information disallowed
 - Similar size
- RefCOCOg
 - Only non-trivial elements
 - 104,560 samples (in 26,711 images)
- CLEVR-REF+
 - Images generated synthetically (data augmentation)

Loss Functions

Cross entropy

The "difference" between predicted and ground truth pixels is computed as,

$$\mathsf{CE}(p,\hat{p}) = -(p\log\hat{p} + (1-p)\log(1-\hat{p})).$$
 (16)

Intuitive interpretation

Taking into account that $p \in \{0, 1\}$, the loss function can be rewritten as follows,

$$\mathsf{CE}(p, \hat{p}) = \begin{cases} -\log(1 - \hat{p}) & p = 0\\ -\log \hat{p} & p = 1. \end{cases}$$
(17)

34 / 76

Loss Functions

Cross entropy variants

Modifying cross entropy:

• Weighted Cross Entropy (WCE)

WCE
$$(p, \hat{p}) = -(\beta p \log \hat{p} + (1 - p) \log(1 - \hat{p})).$$
 (18)

< 🗇 🕨

→ ∃ →

Balanced Cross Entropy (BCE)

$$\mathsf{BCE}(p,\hat{p}) = -(\beta p \log \hat{p} + (1-\beta)(1-p) \log(1-\hat{p})). \tag{19}$$

Training

Loss Functions

Intersection over Union or Jaccard Index

Mathematical definition

Given the predicted segmentation A and the ground truth B, the Jaccard index is defined as follows,

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}.$$
 (20)

36 / 76

David Álvarez Rosa (UPC)

Barcelona – May 25, 2021

Loss Functions

Dice Loss

Intersection over Union as loss function?

Cannot be used directly as a loss function since optimization will be infeasible (think about non-overlapping bounding boxes).

So, we define, Dice Loss (DL) as folows,

$$\mathsf{DL}(p,\hat{p}) = 1 - \frac{2\sum p_{h,w}\hat{p}_{h,w}}{\sum p_{h,w} + \sum \hat{p}_{h,w}}.$$
 (21)

Loss Functions

And much more

Quantitative Measures

Derived from Intersection over Union

• Overall IoU, defined as,

Overall Intersection over Union (IoU) =
$$\frac{\sum_{i=0}^{N} I_i}{\sum_{i=0}^{n} U_i}$$
, (22)

where I_i and U_i correspond to the *i*-th intersection and union (respectively) between the prediction and the ground truth.

Mean IoU, defined as,

Mean IoU =
$$\frac{1}{N} \sum_{i=0}^{N} \text{IoU}_i$$
. (23)

• Precision at Threshold: judge as true/false positive using the loU.

39 / 76

Evaluation Techniques

Qualitative Evaluation

- Analyze with your eyes
- Be smart
- Not numeric but useful

< 3 >

Multimodal Embedding

Joint space

Modular Models Models

David Álvarez Rosa (UPC)

Referring Expression Comprehension

Barcelona - May 25, 2021

42 / 76

UPC

Graph Generation Models

Figure: Summary representation of graph-based models

David Álvarez Rosa (UPC)

Referring Expression Comprehension

→ ∃ → Barcelona - May 25, 2021

< □ > < @ >

43 / 76

IIPC

Chapter Outline

Chapter 4. Models

- Referring Expression Comprehension
- Speech Recognition

< ⊒ >

< 47 ▶

Base Architecture

Topology

Figure: Referring Expression for Video Object Segmentation (RefVOS)

David Álvarez Rosa (UPC)

Referring Expression Comprehension

Base Architecture

Image Encoder

Figure: Atrous convolutions examples with filter size 3×3

David Álvarez Rosa (UPC)

Referring Expression Comprehension

→ ∃ → Barcelona - May 25, 2021

< □ > < @ >

46 / 76

IIPC

- Bidirectional Encoder Representations from Transformers (BERT) •
- Based on the Transformer model
- State of the art (even in computer vision!)

< ⊒ >

David Álvarez Rosa (UPC)

Referring Expression Comprehension

Base Architecture

Multimodal Embedding

Figure: Referring Expression for Video Object Segmentation (RefVOS)

David Álvarez Rosa (UPC)

Referring Expression Comprehension

Loss functions: cross entropy variants

- Weighted Cross Entropy
- Balanced Cross Entropy

Useless learning

- Similar functions (loss objective)
- Small (near 0) partial derivatives
- Very little learning

Loss functions: Dice Loss I

David Álvarez Rosa (UPC)

Referring Expression Comprehension

Barcelona - May 25, 2021

50 / 76

000 000 UPC

Loss functions: Dice Loss II

Referring Expression Comprehension

51/76

Loss functions: Tversky Index

- Similar results
- Non significant improvements

- (日)

David Álvarez Rosa (UPC)

Referring Expression Comprehension

Fusion strategies performance in RefCOCO dataset

	RefCOCO				
Strategy	val	testA	testB		
Addition	56.60	60.87	51.29		
Multiplication	59.45	63.19	54.17		
Concatenation	55.12	58.88	49.59		
Projection	Infeasible	Infeasible	Infeasible		
Projection v2	21.08	-	-		

Multimodal embedding: Projection

It is possible to define applications to map features to a vector space of common dimension J. That is, the application ϕ is defined,

$$\phi \colon \mathbb{R}^{D} \times \mathbb{R}^{D \times J} \longrightarrow \mathbb{R}^{J}$$
$$(V, W_{v}) \longmapsto \phi(V, W_{v}) := W_{v}V,$$
(24)

which maps the visual features V to the joint space \mathbb{R}^J via W_v . In the same way, the application ψ is defined,

$$\psi \colon \mathbb{R}^{d} \times \mathbb{R}^{J \times d} \longrightarrow \mathbb{R}^{J}$$
$$(L, W_{l}) \longmapsto \psi(L, W_{l}) := W_{l}L,$$
(25)

which maps the language features L to the joint space \mathbb{R}^J via W_l

54 / 76

・ロト ・ 同ト ・ ヨト ・ ヨト

Multimodal embedding: Projection v2

Computationally infeasible

 $W_{\nu} \in \mathbb{R}^{D \times J}$, and $D \times J$ is really, really big (order of billions).

Solution:

- Use same parameters for each slice in the depth of the visual features.
- For each slice V^i , use same weigth matrix W_v and embed,

$$\tilde{V}^i = W_v V^i. \tag{26}$$

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A

Multimodal embedding: Projection v2 II

This underperforms previous model (21.08 overall IoU). Caused by:

- Loss of spatial information
- Meaningless transformation to visual information
- Adding unnecessary non-pretrained parameters

Several optimization methods exists, and can be changed, but this won't change the ability of the model to learn necessarily.

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A

David Álvarez Rosa (UPC)

Referring Expression Comprehension

Speech to Text

David Álvarez Rosa (UPC)

Referring Expression Comprehension

Barcelona – May 25, 2021

58 / 76

UPC

э

Chapter Outline

Chapter 5. Results and Comparison

- Quantitative Evaluation
- Qualitative Evaluation

Overall Intersection over Union

Model comparison

		RefCOCO			RefCOCO+		
Method	Paper	val	testA	testB	val	testA	testB
ASGN	[Qiu+20]	50.46	51.20	49.27	38.41	39.79	35.97
BRINet	[Hu+20]	61.35	63.37	59.57	48.57	52.87	42.13
CAC	[Che+19b]	58.90	61.77	53.81	-	-	-
CMPC	[Hua+20]	61.36	64.53	59.64	49.56	53.44	43.23
CMSA	[Ye+21]	58.32	60.61	55.09	43.76	47.60	37.89
DMN	[Mar+18]	49.78	54.83	45.13	38.88	44.22	32.29
MAttNet	[Yu+18]	56.51	62.37	51.70	46.67	52.39	40.08
RefVOS	[Bel+20]	59.45	63.19	54.17	44.71	49.73	36.17
RMI	[Liu+17]	45.18	45.69	45.57	29.86	30.48	29.50
RRN	[Li+18]	55.33	57.26	53.95	39.75	42.15	36.11
STEP	[Che+19a]	60.04	63.46	58.97	48.18	52.33	40.41

60 / 76

Accuracy or Precision at 0.5

Model comparison

		RefCOCO			RefCOCO+			
Method	Paper	val	testA	testB	val	testA	testB	
BRINet	[Hu+20]	71.83	75.09	68.38	-	-	-	
CAC	[Che+19b]	77.08	80.34	70.62	-	-	-	
CMAttErase	[Liu+19b]	78.35	83.14	71.32	68.09	73.65	58.03	
CMPC	[Hua+20]	71.27	-	-	-	-	-	
CMSA	[Ye+21]	69.24	73.87	64.55	45.48	51.41	37.57	
FAOA	[Yan+19]	71.15	74.88	66.32	56.88	61.89	49.46	
LGRAN	[Wan+19]	-	76.6	66.4	-	64.00	53.40	
MAttNet	[Yu+18]	76.65	81.14	69.99	65.33	71.62	56.02	
MMI	[Mao+16]	-	64.90	54.51	-	54.03	42.81	
NMTree	[Liu+19a]	74.71	79.71	68.93	65.06	70.24	56.15	
RefVOS	[Bel+20]	67.34	70.47	65.02	57.28	60.31	46.37	
RMI	[Liu+17]	42.99	42.99	44.99	20.52	21.22	20.78	
RRN	[Li+18]	61.66	64.13	59.35	37.32	40.80	32.42	
STEP	[Che+19a]	70.15	-	-	-	-	-	
ViLBERT	[Lu+19]	-	-	-	72.34	78.52	62.61	

David Álvarez Rosa (UPC)

Barcelona – May 25, 2021

61 / 76

Qualitative Evaluation

Study of Succesful Samples Examples

(a) Player with baseball bat (b) Middle player with glove

(d) Donuts with topping

(e) White background donuts

(c) Man in the left

(f) White donut left behind

62 / 76

Referring Expression Comprehension

Barcelona - May 25, 2021

Qualitative Evaluation

Study of Succesful Samples Examples II

(a) Person in blue

(b) Person with watch

(c) Woman

David Álvarez Rosa (UPC)

Referring Expression Comprehension

Barcelona – May 25, 2021

イロト イポト イヨト イヨ

63 / 76

Study of Failed Samples

Examples

(a) Left tennis racket

(b) Blond boy looking back

(c) Banana

(d) Statue

(e) Statue of a bird

David Álvarez Rosa (UPC)

Referring Expression Comprehension

Barcelona - May 25, 2021

64 / 76

(a) Woman holding hair dryer

(c) Tennis match referee

(b) Hair dryer

(d) Tennis match referee sitting behind

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Chapter Outline

Chapter 6. Visualization

- User Interface
- Back End

Presentation of User Interface

- Responsive Web Design
- Accesibility
- Usage Example: https://recomprehension.com

David Álvarez Rosa (UPC)

Referring Expression Comprehension
Back end

Graphic representation

Chapter Outline

Chapter 7. Project Analysis

- Planning and Scheduling
- Cost Analysis (view thesis)
- Environmental Impact (view thesis)

Table of Activities

Main activities broken down into tasks

Code	Activity		End
Α	Learn basics of ML/DL	Oct.	Jan.
A1	ML course [Ng20]	-	-
A2	DL lectures from UPC [Gir20]	-	-
A3	Stanford CS231n: CNNs for Visual Recognition [LKX20]	-	-
A4	DL specialization [NKM20]	-	
В	Learn thesis topic	Dec.	Feb.
B1	Multimodal learning lectures [Gir20]		-
B2	Publications	-	-
B3	State-of-the-art papers on REC	-	-

David Álvarez Rosa (UPC)

70 / 76

Table of Activities

Main activities broken down into tasks

Code	Activity	Start	End
С	Models creation	Jan.	Apr.
C1	Server usage	-	-
C2	Multiple iterations	-	-
C3	Generate test values	-	-
D	Web development	Feb.	Apr.
D1	Front end (HTML, CSS, JS)	-	-
D2	API creation (PHP)	-	-
D3	Web server configuration	-	-
D4	Publish website (domain, server)	-	-
Е	Bachelor's thesis	Dec.	May
E1	Write thesis (-	-
E2	Create presentation slides ($\[MText{PT}]$ X)	-	-
E4	Prepare presentation	-	-
		(1)	(大臣)

Referring Expression Comprehension

Barcelona - May 25, 2021

71/76

Gantt Chart

Main activities

72 / 76

Chapter Outline

8 Chapter 8. Conclusions

• Future work

David Álvarez Rosa (UPC)

Referring Expression Comprehension

Conclusions General

- Introduction to the fields of
 - Machine Learning
 - Computer Vision
 - Natural Language Procesing
- Improve programming skills (Python, Pytorch)
- Web development (front end, back end API)

Future possibilities

For thesis and more

- Fix "black box" problem (reasoning process cannot be visualized) Ideal multi-step with woman in red dress sitting on the right:
 - Find all the women present in the image, these objects will be the only solution candidates.
 - Prom these women choose all those who wear a red dress.
 - Is From this group select those that are seated.
 - In ally, if there is more than one possibility, select the one on the right.
- Lack of high quality datasets
- Adapt to video (with temporal coherence)
- Leaderboard creation and objective evaluation of state of the art

(3)

End Matter

Thanks

Thank you!

David Álvarez Rosa (UPC)

Referring Expression Comprehension

Barcelona - May 25, 2021